Golang : Accessing dataframe-go element by row, column and name example




Dataframe-go is similar to Python's pandas package and it is used for statistics and data manipulation inside a Go program. Use this package together with Gonum and you can do a lot more fun stuff such as predicting a trend momentum, etc..

The code below is just a simple example from my own future reference. Basically it shows how to get an element data by row and column or get a series by name.

Here you go!


 package main

 import (
  "fmt"

  "github.com/rocketlaunchr/dataframe-go"
 )

 func main() {
  s1 := dataframe.NewSeriesInt64("day", nil, 1, 2, 3, 4, 5, 6, 7, 8)
  s2 := dataframe.NewSeriesFloat64("sales", nil, 50.3, 23.4, 56.2, nil, nil, 84.2, 72, 89)
  df := dataframe.NewDataFrame(s1, s2)

  fmt.Print(df)

  // access element by row and column
  // get the first item value from SALES column
  fmt.Println(df.Series[1].Value(0))

  // get the first item value from DAY column
  fmt.Println(df.Series[0].Value(7))

  // instead of using Series[1] and Series[0]
  // we can extract the int value from NameToColumn and use it to get
  // the same result
  salesSeries, err := df.NameToColumn("sales") // case sensitive

  if err != nil {
 fmt.Println(err)
  } else {
 // do a type assertion of float64 on the interface{} result
 diff := df.Series[salesSeries].Value(1).(float64) - df.Series[salesSeries].Value(0).(float64)
 fmt.Println("Delta : ", diff)
  }

 }

Output:

+-----+-------+---------+

| | DAY | SALES |

+-----+-------+---------+

| 0: | 1 | 50.3 |

| 1: | 2 | 23.4 |

| 2: | 3 | 56.2 |

| 3: | 4 | NaN |

| 4: | 5 | NaN |

| 5: | 6 | 84.2 |

| 6: | 7 | 72 |

| 7: | 8 | 89 |

+-----+-------+---------+

| 8X2 | INT64 | FLOAT64 |

+-----+-------+---------+

50.3

8

Delta : -26.9





By Adam Ng(黃武俊)

IF you gain some knowledge or the information here solved your programming problem. Please consider donating to the less fortunate or some charities that you like. Apart from donation, planting trees, volunteering or reducing your carbon footprint will be great too.


Advertisement